
Bose-Einstein condensation of trapped polaritons in two-dimensional electron-hole systems
in a high magnetic field

Oleg L. Berman,1 Roman Ya. Kezerashvili,1,2 and Yurii E. Lozovik3

1Physics Department, New York City College of Technology, The City University of New York, Brooklyn, New York 11201, USA
2The Graduate School and University Center, The City University of New York, New York, New York 10016, USA

3Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region, Russia
�Received 25 May 2009; published 1 September 2009�

The Bose-Einstein condensation �BEC� of magnetoexcitonic polaritons �magnetopolaritons� in two-
dimensional �2D� electron-hole system embedded in a semiconductor microcavity in a high magnetic field B is
predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer
and quantum well �QW�. A 2D gas of magnetopolaritons is considered in a planar harmonic potential trap. Two
possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic
electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the
trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and
graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is
shown that the effective polariton mass Meff increases with magnetic field as B1/2. The BEC critical tempera-
ture Tc

�0� decreases as B−1/4 and increases with the spring constant of the parabolic trap. The Rabi splitting
related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is
shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional
to B−1/4 while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.
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I. INTRODUCTION

In the past decade, Bose coherent effects of two-
dimensional �2D� excitonic polaritons in a quantum well em-
bedded in a semiconductor microcavity have been the sub-
ject of theoretical and experimental studies.1,2 To obtain
polaritons, two mirrors placed opposite each other form a
microcavity and quantum wells are embedded within the
cavity at the antinodes of the confined optical mode. The
resonant exciton-photon interaction results in the Rabi split-
ting of the excitation spectrum. Two polariton branches ap-
pear in the spectrum due to the resonant exciton-photon cou-
pling. The lower polariton branch of the spectrum has a
minimum at zero momentum. The effective mass of the
lower polariton is extremely small and lies in the range
10−5–10−4 of the free-electron mass. These lower polaritons
form a 2D weakly interacting Bose gas. The extremely light
mass of these bosonic quasiparticles, which corresponds to
experimentally achievable excitonic densities, result in a
relatively high critical temperature for superfluidity, of 100 K
or even higher. The reason for such a high critical tempera-
ture is that the 2D thermal de Broglie wavelength is in-
versely proportional to the mass of the quasiparticle.

While at finite temperatures there is no true Bose-Einstein
condensation �BEC� in any infinite untrapped 2D system, a
true 2D BEC quantum-phase transition can be obtained in
the presence of a confining potential.3,4 Recently, the polari-
tons in a harmonic potential trap have been studied experi-
mentally in a GaAs/AlAs quantum well embedded in a
GaAs/AlGaAs microcavity.5 In this trap, the exciton energy
is shifted using a stress-induced band gap. In this system,
evidence for the BEC of polaritons in a quantum well has
been observed.6 The theory of the BEC and superfluidity of
excitonic polaritons in a quantum well without magnetic

field in a parabolic trap has been developed in Ref. 7. The
Bose condensation of polaritons is caused by their bosonic
character.6–8

While the 2D electron system was studied in quantum
wells9 in the past decade, a novel type of 2D electron system
was experimentally obtained in graphene, which is a 2D hon-
eycomb lattice of the carbon atoms that form the basic planar
structure in graphite.10,11 Due to unusual properties of the
band structure, electronic properties of graphene became the
object of many recent experimental and theoretical
studies.10–16 Graphene is a gapless semiconductor with mass-
less electrons and holes which have been described as Dirac
fermions.17 The unique electronic properties in graphene in a
magnetic field have been studied recently.18–21 The electron-
photon interaction in graphene was discussed, for example,
in Ref. 22. The energy spectrum and the wave functions of
magnetoexcitons, or electron-hole pairs in a magnetic field,
in graphene have been calculated in interesting works.23,24

The spatially indirect excitons in coupled quantum wells
�CQWs� with and without a magnetic field B have been stud-
ied recently experimentally in Refs. 25–28. The experimental
and theoretical interest in these systems is particularly due to
the possibility of the BEC and superfluidity of indirect exci-
tons, which can manifest in the CQW as persistent electrical
currents in each well and also through coherent optical prop-
erties and Josephson phenomena.29–32 Since the exciton bind-
ing energies increase with magnetic field, 2D magnetoexci-
tons survive in a substantially wider temperature range in
high magnetic fields.33–39 The BEC and superfluidity of spa-
tially indirect magnetoexcitons with spatially separated elec-
trons and holes have been studied in graphene bilayer40 and
graphene superlattice.41,42 The electron-hole pair condensa-
tion in the graphene-based bilayers have been studied in.43–46

However, the polaritons in graphene in high magnetic field
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have not yet been considered. The BEC and superfluidity of
cavity polaritons in a QW without a trap were considered in
Refs. 47 and 48. It is interesting to study a 2D system such as
polaritons in graphene embedded in a microcavity from the
point of view of the existence of the BEC within it.

The purpose of this paper is to point out the existence of
the BEC of the magnetoexcitonic polaritons in a QW and a
graphene layer embedded in a semiconductor microcavity in
a strong magnetic field and to discuss the condition of its
realization. Since it was shown that the magnetoexcitons in a
QW and graphene layer in a high magnetic field can be de-
scribed by the same effective Hamiltonian with the different
effective mass of a magnetoexciton,41,42 we expect to obtain
the similar expressions for the critical temperature of BEC
for cavity polaritons in a QW and graphene with the only
difference in the effective mass of a magnetoexciton.

The paper is organized in the following way. In Sec. II the
spectrum of an isolated magnetoexciton with the electron
and hole in a single graphene layer and QW is derived by
applying perturbation theory with respect to the strength of
the Coulomb electron-hole attraction. In Sec. III the effective
Hamiltonian of microcavity polaritons in graphene and QW
in a high magnetic field along with a trapping potential is
derived. In Sec. IV the Rabi splitting related to the creation
of a magnetoexciton in graphene and QW in a high magnetic
field is obtained. The temperature of BEC and the number of
polaritons in Bose-Einstein condensate as a function of tem-
perature, magnetic field and spring constant are calculated in
Sec. V. Finally, the discussion of the results and conclusions
follow in Sec. VI.

II. AN ISOLATED MAGNETOEXCITON IN A SINGLE
GRAPHENE LAYER AND QW

When an undoped electron system in graphene in a mag-
netic field without an external electric field is in the ground
state, half of the zeroth Landau level is filled with electrons,
all Landau levels above the zeroth one are empty, and all
levels below the zeroth one are filled with electrons. We
suggest using the gate voltage shown in Fig. 1 to control the
chemical potential in graphene by two ways: to shift it above
the zeroth level so that it is between the zeroth and first
Landau levels �the first case� or to shift the chemical poten-
tial below the zeroth level so that it is between the first nega-
tive and zeroth Landau levels �the second case�. In both
cases, all Landau levels below the chemical potential are

completely filled and all Landau levels above the chemical
potential are completely empty. In the first case, there are
allowed transitions between the zeroth and the first Landau
levels while in the second case there are allowed transitions
between the first negative and zeroth Landau levels �see the
selection rules for optical transitions between the Landau
levels in single-layer graphene49 and the analogous rules for
the transitions between Landau levels in a 2D
semiconductor50�. Correspondingly, we consider magnetoex-
citons formed in graphene by the electron on the first Landau
level and the hole on the zeroth Landau level �the first case�
or the electron on the zeroth Landau level and the hole on the
Landau level −1 �the second case�. Note that by appropriate
gate potential we can also use any other neighboring Landau
levels n and n+1.

It is obvious that magnetoexcitons formed in graphene are
two-dimensional since graphene is a two-dimensional
structure. Below we show that for the relatively high dielec-
tric constant of the microcavity, ��e2 / ��vF��2 �vF
=�3at / �2�� is the Fermi velocity of electrons in graphene,
where a=2.566 Å is a lattice constant and t�2.71 eV is the
overlap integral between the nearest carbon atoms51� the
magnetoexciton energy in graphene can be calculated by ap-
plying perturbation theory with respect to the strength of the
Coulomb electron-hole attraction analogously as it was done
in Ref. 33 for 2D quantum wells in a high magnetic field
with nonzero electron and hole masses �me�0 and mh�0�.
This approach allows us to obtain the spectrum of an isolated
magnetoexciton with the electron on the Landau level 1 and
the hole on the Landau level 0 in a single graphene layer.
The characteristic Coulomb electron-hole attraction for the
single graphene layer is e2 / ��rB�, where � is the dielectric
constant of the environment around graphene, rB

=�c� / �eB� denotes the magnetic length of the magnetoexci-
ton in the magnetic field B, and c is the speed of light. The
energy difference between the first and zeroth Landau levels
in graphene is �vF /rB. For graphene, the perturbative ap-
proach with respect to the strength of the Coulomb electron-
hole attraction is valid when e2 / ��rB���vF /rB.33 This con-
dition can be fulfilled at all magnetic fields B if the dielectric
constant of the surrounding media satisfies the condition
e2 / ���vF��1. Therefore, we claim that the energy difference
between the first and zeroth Landau levels is always greater
than the characteristic Coulomb attraction between the elec-
tron and the hole in the single graphene layer at any B if
��e2 / ��vF��2. Thus, applying perturbation theory with re-
spect to weak Coulomb electron-hole attraction in graphene
embedded in the GaAs microcavity ��=12.9� is more accu-
rate than for graphene embedded in the SiO2 microcavity
��=4.5�. This condition for perturbation theory in graphene
is different from the 2D quantum well in GaAs since in the
latter case the energy deference between the neighboring
Landau levels is ��c, where �c=eB / �c�eh� is the cyclotron
frequency, �eh=memh / �me+mh�, and me and mh are the ef-
fective masses of the electron and the hole,
correspondingly.33 Therefore, for the quantum well in GaAs,
the binding energy of the magnetoexciton is much smaller
than the energy difference between two neighboring Landau
levels only in the limit of high magnetic field B
�e3c�eh

2 / ��2�3� and perturbation theory with respect to

B
gate

E

graphene

FIG. 1. The graphene sheet in the presence of the applied elec-
tric E and magnetic B fields.
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weak electron-hole attraction can be applied only for high
magnetic field.

The operator for electron-hole Coulomb attraction is

V̂�r� = −
e2

�r
, �1�

where r=re−rh, and re and rh are vectors of an electron and
a hole in a 2D plane, respectively.

A conserved quantity for an isolated electron-hole pair in
a magnetic field B is the generalized magnetoexciton mo-

mentum P̂,33,35,52 which is given by

P̂ = − i��e − i��h +
e

c
�Ae − Ah� −

e

c
�B � �re − rh�� . �2�

The conservation of P̂ is related to the invariance of the
system upon the simultaneous translation of an electron and
a hole along with a gauge transformation. In Eq. �2�, the
cylindrical gauge for the vector potential is used: Ae�h�
=1 /2�B�re�h��.

The eigenfunction 	
 of the Hamiltonian of the two-
dimensional electron-hole pair in graphene in the perpen-
dicular magnetic field B, which is also the eigenfunction of

the generalized momentum P̂, has the form33,35,52

	P�R,r� = exp�i�P +
e

2c
�B � r�	R

�

�̃�r − �0� , �3�

where R= �re+rh� /2 and �0=c�B�P� / �eB2�.
The wave function of the relative coordinate �̃�r� in Eq.

�3� can be expressed in terms of the two-dimensional
harmonic-oscillator eigenfunctions �n1,n2

�r�. For an electron
at the Landau level n+ and a hole at the level n−, the four-
component wave functions are23

�̃n+,n−
�r� = ��2�n+,0+n−,0−2�

s+s−��n+�−1,�n−�−1�r�

s+��n+�−1,�n−��r�

s−��n+�,�n−�−1�r�

��n+�,�n−��r� ,
 , �4�

where s�=sgn�n��.
In a high magnetic field, the magnetoexciton is formed by

an electron on the Landau level 1 and a hole on the Landau
level 0 with the following four-component wave function:

�̃1,0�r� =
1
�2�

0

�0,0�r�
0

�1,0�r�
 , �5�

where �n1,n2
�r� is the two-dimensional harmonic-oscillator

eigenfunction given by

�n1,n2
�r� = �2��−1/22−�m�/2 ñ!

�n1 ! n2!

1

rB
sgn�m�mr�m�

rB
�m�

�exp�− im� −
r2

4rB
2 
Lñ

�m�� r2

2rB
2 	 . �6�

In Eq. �6�, Lñ
�m� denotes Laguerre polynomials, m=n1−n2, ñ

=min�n1 ,n2�, and sgn�m�m=1 for m=0. Note that we con-
sider a magnetoexciton formed by an electron and a hole
located in the same type of valley, e.g., in the point K �or K��
of Brillouin zone.

The magnetoexciton energies En+,n−
�P� in graphene are

functions of the generalized magnetoexciton momentum P
and in the first-order perturbation are equal to

En+,n−
�P� = En+,n−

�0� + En+,n−
�P� . �7�

In Eq. �7�, En+,n−

�0� is the energy of the electron-hole pair when
the electron is at the Landau level n+ and the hole is at the
Landau level n−, and it is given by23

En+,n−

�0� =
�vF

rB

�2�sgn�n+���n+� − sgn�n−���n−�� �8�

while

En+,n−
�P� = − �n+n−P�

e2

�r
�n+n−P� , �9�

where �n+n−P�=	P�R ,r� is defined by Eq. �3�.
We calculate the magnetoexciton energy using the expec-

tation value of the electron-hole Coulomb attraction for an
electron on the Landau level 1 and a hole on the Landau
level 0. Neglecting the transitions between different Landau
levels, the first-order perturbation with respect to the weak
Coulomb attraction results in the following expression for
the energy of the magnetoexciton:

E1,0�P� = − �1 0 P�
e2

��re − rh�
�1 0 P� . �10�

Denoting the averaging by the 2D harmonic-oscillator eigen-
functions �n1,n2

�r� as �ñmP� . . . �ñmP��, where ñ and m are
defined below Eq. �6�, we get the energy of a magnetoexci-
ton created by the electron and hole on the lowest Landau
level:

E1,0�P� = �1 0 P�V̂�r��1 0 P�

=
1

2
��0 0 P�V̂�r��0 0 P�� + �0 1 P�V̂�r��0 1 P��� .

�11�

Following Ref. 37, it is easy to show that, for small magnetic
momenta P�� /rB for the electron-hole Coulomb attraction
Eq. �1�, each matrix element in Eq. �11� can be expressed in
terms of the binding energy and the effective magnetic mass
of the magnetoexciton formed by an electron and a hole in
the quantum well with the 2D electrons and holes
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�ñmP�V̂�r��ñmP�� = − Eñm
�b� +

P2

2Mñm�B�
. �12�

Eñm
�b� and Mñm�B� are the binding energy and the effective

magnetic mass of the magnetoexciton, respectively, corre-
sponding to the magnetoexciton in the state with quantum
numbers ñ and m.

Substituting Eq. �12� into Eq. �11�, we get the dispersion
law of a magnetoexciton for small magnetic momenta

E1,0�P� =
1

2
�E00

�b��B� + E01
�b��B�� +

1

2
� 1

M00�B�
+

1

M01�B�
P2

2
.

�13�

Equation �13� can be rewritten in the form

E1,0�P� = − EB
�b� +

P2

2mB
, �14�

where the binding energy EB
�b� and the effective magnetic

mass mB of a magnetoexciton in graphene with the electron
on the Landau level 1 and the hole on the Landau level 0 are

EB
�b� = −

1

2
�E00

�b��B� + E01
�b��B�� ,

1

mB
=

1

2
� 1

M00�B�
+

1

M01�B�
	 . �15�

The constants E00
�b��B�, E01

�b��B�, M00�B�, and M01�B� depend
on the magnetic field B, and are given in Ref. 37

E00
�b��B� = − E0,

E01
�b��B� = −

1

2
E0,

M00�B� = M0,

M01�B� = − 2M0, �16�

where E0 is the magnetoexcitonic energy and M0 is the ef-
fective magnetoexciton mass in a quantum well. These quan-
tities are defined as

E0 =��

2

e2

�rB
,

M0 =
23/2��2

��e2rB

. �17�

Substituting Eq. �16� into Eq. �15� gives the binding energy
EB

�b� and the effective magnetic mass mB of the magnetoexci-
ton in a single graphene layer in a high magnetic field

EB
�b� =

3

4
E0 =

3

4
��

2

e2

�rB
, mB = 4M0 =

27/2��2

��e2rB

. �18�

We can see that the effective magnetic mass of a 2D direct
magnetoexciton is four times higher in graphene than in a

quantum well while the magnetoexcitonic energy is 3/4 times
lower in graphene than in a quantum well at the same � and
B. It is interesting to mention that we obtained the effective
magnetic mass of the magnetoexciton in Eq. �18� using the
four-component wave functions of magnetoexcitons in
graphene given by Eqs. �4� and �5�. This reflects the specific
and different properties of magnetoexcitons and, therefore,
magnetopolaritons in graphene compared to the polaritons in
a quantum well without a magnetic field.7

At small magnetic momentum �P�� /rB� for measuring
energies relative to the binding energy of a magnetoexciton,
the dispersion relation �k�P� of a magnetoexciton is qua-
dratic

�k�P� =
P2

2mBk
, �19�

where mBk is the effective magnetic mass that depends on B
and the magnetoexcitonic quantum numbers k= �n+ ,n−� for
an electron at Landau level n+ and a hole at level n−.

It is easy to see that the results for the binding energy and
effective magnetic mass of the exciton with the electron on
the Landau level 0 and the hole on the Landau level −1 will
be exactly the same as for the exciton with the electron on
the Landau level 1 and the hole on the Landau level 0.

We have derived above the spectrum of the single mag-
netoexciton in graphene �Eq. �14��, which is described by the
eigenfunction of Dirac equation that has the four-component
spinor structure given by Eq. �5�. Alternatively, the wave
function of the magnetoexciton in a QW has the one-
component structure because this wave function is the eigen-
function of Schrödinger equation. However, Eq. �14� is valid
also for a QW but the binding energy and effective magnetic
mass of 2D magnetoexciton formed by the electron and hole
in the QW on the zeroth Landau level are given by33

EB
�b� = E0 =��

2

e2

�rB
, mB = M0 =

23/2��2

��e2rB

. �20�

Also for a QW the expression for the single magnetoexciton
spectrum given by Eq. �19� is valid.

III. THE EFFECTIVE HAMILTONIAN OF TRAPPED
MICROCAVITY POLARITONS IN GRAPHENE AND IN A

QW IN A HIGH MAGNETIC FIELD

Polaritons are linear superpositions of excitons and pho-
tons. In high magnetic fields, when magnetoexcitons may
exist, the polaritons become linear superpositions of magne-
toexcitons and photons. Let us define the superpositions of
magnetoexcitons and photons as magnetopolaritons. It is ob-
vious that magnetopolaritons in graphene are two-
dimensional since graphene is a two-dimensional structure.
The effective Hamiltonian of magnetopolaritons in graphene
and a QW in the strong magnetic field is given by

Ĥtot = Ĥmex + Ĥph + Ĥmex-ph, �21�

where Ĥph is a photonic Hamiltonian, Ĥexc-ph is the Hamil-

tonian of magnetoexciton-photon interaction, and Ĥmex is a

BERMAN, KEZERASHVILI, AND LOZOVIK PHYSICAL REVIEW B 80, 115302 �2009�

115302-4



effective magnetoexcitonic Hamiltonian. Let us analyze each
term of the Hamiltonian for magnetopolaritons �Eq. �21��. It
was shown in Refs. 41 and 42 that 2D magnetoexcitons in
graphene and a QW in a high magnetic field can be described

by the same effective Hamiltonian Ĥmex. The effective
Hamiltonian of 2D noninteracting magnetoexcitons in the
infinite homogeneous system in a high magnetic field is
given by41,42

Ĥmex = �
P

�mex�P�b̂P
† b̂P, �22�

where b̂P
† and b̂P are magnetoexcitonic creation and annihi-

lation operators obeying the Bose commutation relations. For
Hamiltonian �22�, the energy dispersion of a single magne-
toexciton in a graphene layer is given by

�mex�P� = Eband − EB
�b� + �0�P� . �23�

Eband=E1,0
�0� =�2�vF /rB is the band-gap energy, which is the

difference between the Landau levels 1 and 0 in graphene
defined by Eq. �8�. EB

�b� is the binding energy of a 2D mag-
netoexciton with the electron in the Landau level 1 and the
hole on the Landau level 0 in a single graphene layer, and
�0�P�= P2 / �2mB�, where mB is the effective magnetic mass
of a 2D magnetoexciton with the electron on the Landau
level 1 and hole on the Landau level 0 in a single graphene
layer given by Eq. �19�.

It can be shown that the interaction between two direct 2D
magnetoexcitons in graphene with the electron on the Lan-
dau level 1 and the hole on the Landau level 0 can be ne-
glected in a strong magnetic field, in analogy to what is
described in Ref. 33 for 2D magnetoexcitons in a quantum
well. The dipole moment of each exciton in a magnetic field
is d1,2=e�0=rB

2�B�P1,2� /B,33 where P1 and P2 are the mag-
netic momenta of each exciton and P1 , P2�1 /rB. The mag-
netoexcitons are located at a distance R�rB from each other.
The corresponding contribution to the energy of their dipole-
dipole interaction is �EB

�b��rB /R�3P1P2rB
2 /���rB /R�3P1P2 /

��M0��e2rB
2 / ��R3�. Inputting the radius of the magnetoexci-

ton in graphene r0,1�rB,40 we obtain that the van der Waals
attraction of the exciton at zero momenta is proportional to
��r0,1 /R�6��rB /R�6. Therefore, in the limit of a strong mag-
netic field for a dilute system rB�R, both the dipole-dipole
interaction and the van der Waals attraction vanish, and the
2D magnetoexcitons in graphene form an ideal Bose gas
analogously to the 2D magnetoexcitons in a quantum well
given in Ref. 33. Thus, the Hamiltonian �21� does not in-
clude the term corresponding to the interaction between two
direct magnetoexcitons in a single graphene layer. So in high
magnetic field there is the BEC of the ideal magnetoexci-
tonic gas in graphene.

Let us analyze the other two terms in the Hamiltonian
�21�. The Hamiltonian of noninteracting photons in a semi-
conductor microcavity is given by53

Ĥph = �
P

�ph�P�âP
† âP, �24�

where âP
† and âP are photonic creation and annihilation Bose

operators. The cavity photon spectrum is given by

�ph�P� = �c/n��P2 + �2�2LC
−2. �25�

In Eq. �25�, LC is the length of the cavity, n=��C is the
effective refractive index, and �C is the dielectric constant of
the cavity. We assume that the length of the microcavity has
the following form:

LC�B� =
��c

n�Eband − EB
�b��

�26�

corresponding to the resonance of the photonic and magne-
toexcitonic branches at P=0 �i.e., �mex�0�=�ph�0��. The
length of the microcavity, corresponding to a
magnetoexciton-photon resonance, decreases with the incre-
ment of the magnetic field as B−1/2. The dependence of the
length of the microcavity corresponding to the
magnetoexciton-photon resonance on the magnetic field is
shown in Fig. 2. The resonance between magnetoexcitons
and cavity photonic modes can be achieved either by con-
trolling the spectrum of magnetoexcitons �ex�P� by changing
magnetic field B or by choosing the appropriate length of the
microcavity LC. Let us mention that, while in the presence of
a high magnetic field, the length of the microcavity corre-
sponding to the magnetoexciton-photon resonance depends
on the magnetic field as it is shown in Fig. 2. This effect does
not take place in the system without a magnetic field.7

The Hamiltonian of the harmonic magnetoexciton-photon
coupling has the form54

Ĥmex-ph = ��R�
P

âP
† b̂P + H.c., �27�

where the magnetoexciton-photon coupling energy repre-
sented by the Rabi constant ��R is obtained in Sec. IV. Let
us mention that �R is obtained for a QW from the standard
procedure describing the electron-photon interaction in the
Hamiltonian by the P ·A term while in a single graphene
layer �R is obtained from the electron-photon interaction
based on the Dirac Hamiltonian for the electron in graphene.

The excitonic and photonic operators are defined as54

Magnetic field, B (T)
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FIG. 2. �Color online� The length of the microcavity of GaAs
��C=12.9�, corresponding to magnetoexciton-photon resonance, as
a function of the magnetic field B.
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b̂P = XPp̂P − CPûP, âP = CPp̂P + XPûP, �28�

where p̂P and ûP are lower and upper magnetopolariton Bose
operators, respectively. XP and CP are given by

XP =
1

�1 + � ��R

�LP�P� − �ph�P�	
2

,

CP = −
1

�1 + ��LP�P� − �ph�P�
��R

	2
, �29�

and the energy spectra of the lower/upper magnetopolaritons
are

�LP/UP�P� =
�ph�P� + �mex�P�

2

�
1

2
���ph�P� − �mex�P��2 + 4���R�2. �30�

Equation �30� implies a splitting of 2��R between the upper
and lower states of polaritons at P=0, which is known as the
Rabi splitting. Let us also mention that �XP�2 and �CP�2=1
− �XP�2 represent the magnetoexciton and cavity photon frac-
tions in the lower magnetopolariton.

Substituting Eq. �28� into Eqs. �22�, �24�, and �27�, we

conclude that the total Hamiltonian Ĥtot �21� can be diago-
nalized by applying unitary transformations �Eq. �28�� and
has the form

Ĥtot = �
P

�LP�P�p̂P
† p̂P + �

P
�UP�P�ûP

† ûP, �31�

where p̂P
† , p̂P, ûP

† , and ûP are the Bose creation and annihila-
tion operators for the lower and upper magnetopolaritons,
respectively.

Equation �31� is the Hamiltonian of magnetopolaritons in
a single graphene layer in a high magnetic field. Our particu-
lar interest is the lower energy magnetopolaritons which pro-
duce the BEC. The lower palaritons have the lowest energy
within a single graphene layer. Therefore, from Eq. �31� we
can obtain

Ĥtot = �
P

�LP�P�p̂P
† p̂P. �32�

Similarly to the case of Bose atoms in a trap55,56 in the case
of a slowly varying external potential, we can make the qua-
siclassical approximation, assuming that the effective mag-
netoexciton mass does not depend on a characteristic size l
of the trap and it is a constant within the trap. This quasi-
classical approximation is valid if P�� / l. The harmonic
trap is formed by the two-dimensional planar potential in the
plane of graphene. The potential trap can be produced in two
different ways. In case 1, the potential trap can be produced
by applying an external inhomogeneous electric field or in-
homogeneous local stress. The spatial dependence of the ex-
ternal field potential V�r� is caused by shifting of magnetoex-
citon energy by applying an external inhomogeneous electric

field or inhomogeneous local stress. The photonic states in
the cavity are assumed to be unaffected by this electric field
or stress. In this case the band energy Eband is replaced by
Eband�r�=Eband�0�+V�r�. Near the minimum of the magne-
toexciton energy, V�r� can be approximated by the planar
harmonic potential �r2 /2, where � is the spring constant.
Note that a high magnetic field does not change the trapping
potential in the effective Hamiltonian.50,57 In case 2, the trap-
ping of magnetopolaritons is caused by the inhomogeneous
shape of the cavity when the length of the cavity is given by

LC�r� =
��c

n�Eband − EB
�b� + �r2/2�

, �33�

where r is the distance between the photon and the center of
the trap. In case 2, the � in Eq. �33� is the curvature charac-
terizing the shape of the cavity. In case 1, for the slowly
changing confining potential V�r�=�r2 /2, the magnetoexci-
ton spectrum is given in the effective-mass approximation as

�mex
�0� �P� = �mex�P� + V�r� = �c/n���LC

−1 +
�

2
r2 +

P2

2mB
,

�34�

where r is now the distance between the center of mass of
the magnetoexciton and the center of the trap. The Hamil-
tonian for photons in this case is given by Eq. �24�, the
spectrum of photons is shown by Eq. �25� and the length of
the microcavity is given by Eq. �26�.

In case 2, for the slowly changing shape of the length of
cavity given by Eq. �33�, the photonic spectrum is given in
the effective-mass approximation as

�ph
�0��P� = �c/n��P2 +

n2

c2�Eband − EB
�b� +

�r2

2
	 . �35�

This quasiclassical approximation is valid if P�� / l, where
l= �� / �mB�0��1/2 is the size of the magnetoexciton cloud in
an ideal magnetoexciton gas and �0=�� /mB. The Hamil-
tonian and spectrum of magnetoexcitons in this case are
given by Eqs. �22� and �23�, correspondingly.

The total Hamiltonian Ĥtot can be diagonalized by apply-
ing unitary transformations. At small momenta �
�1 /2�mB

−1+ �c /n�LC /���P2 / ���R��1 �LC=��c /n�Eband

−EB
�b��−1� and weak confinement ���r2 / ���R��1, the

single-particle lower magnetopolariton spectrum obtained
through the substitution of Eq. �34� into Eq. �30�, in linear
order with respect to the small parameters � and �, is

�0�P� �
c

n
��LC

−1 − ���R� +
�

4
r2 +

1

4
�mB

−1 +
cLC�B�

n��

P2.

�36�

Let us emphasize that the spectrum of noninteracting mag-
netopolaritons �0�P� at small momenta and weak confine-
ment is given by Eq. �36� for both physical realizations of
confinement: case 1 and case 2. By substituting Eq. �34� into
Eq. �29�, we obtain XP�1 /�2. The condition for the validity
of the quasiclassical approach in Eq. �22�, Pl��, is also
applied here.
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If we measure the energy relative to the P=0 lower mag-
netopolariton energy �c /n���LC

−1− ���R�, we obtain the re-
sulting effective Hamiltonian for trapped magnetopolaritons
in graphene in a magnetic field. At small momenta ��1
�LC=��c /n�Eband−EB

�b��−1� and weak confinement ��1,
this effective Hamiltonian is

Ĥeff = �
P
� P2

2Meff�B�
+

1

2
V�r�
p̂P

† p̂P, �37�

where the sum over P is carried out only over P�� / l �only
in this case the quasiclassical approach used in Eq. �34� is
valid� and the effective magnetic mass of a magnetopolariton
is given by

Meff�B� = 2�mB
−1 +

cLC�B�
n��


−1

. �38�

According to Eq. �38�, the effective magnetopolariton mass
Meff increases with the increment in the magnetic field as
B1/2, as shown in Fig. 3. Let us emphasize that the resulting
effective Hamiltonian for magnetopolaritons in graphene in a
magnetic field for the parabolic trap is given by Eq. �37� for
both physical realizations of confinement represented by case
1 and case 2. The effective magnetic mass of the magneto-
polariton in a QW is approximately the same as in graphene
since the contribution to Meff�B� from the second term in the
rhs of Eq. �38� is much higher than from the first term. So the
effective mass of the magnetopolariton in a QW can also be
presented by Fig. 3. Let us mention that the effective Hamil-
tonian of magnetopolaritons in a QW in microcavity is also
given by Eq. �37� with the effective magnetic mass of mag-
netoexciton with the electron and hole on the zeroth Landau
level provided by Eq. �20�.

IV. THE RABI SPLITTING CONSTANT IN GRAPHENE
AND A QW IN HIGH MAGNETIC FIELD

Neglecting anharmonic terms for the magnetoexciton-
photon coupling, the Rabi splitting constant �R can be esti-
mated quasiclassically as

���R� = ��f �Ĥint�i�� , �39�

where Ĥint is the Hamiltonian of the electron-photon interac-
tion. For graphene this interaction is determined by Dirac
electron Hamiltonian as

Ĥint = −
vFe

c
�̂� · A� ph0 =

vFe

i�
�̂� · E� ph0, �40�

where �̂� = ��̂x , �̂y�, �̂x and �̂y are Pauli matrices, A� ph0 is the
vector potential corresponding to a single cavity photon, and
Eph0= �2��� / ��W��1/2 is the magnitude of electric field cor-
responding to a single cavity photon of the frequency � in
the volume of microcavity W while for the QW this interac-
tion is

Ĥint = d�12 · E� ph0, �41�

where

d�12 = e�
i

ri �42�

is the dipole momentum of transition and the sum is taken
over the coordinate vectors related to the positions of all the
electrons in the system.

In Eq. �39� the initial �i� and final �f� electron states are
different for graphene and a quantum well. For the case of
graphene these electron states are defined as

�i� = �
k

ĉ0,k
† �0�0�0�1,

�f� = b̂1,0
† �i� . �43�

In Eq. �43�, ĉn,k
† is the Fermi creation operator of the electron

with the y component of the wavevector k on the Landau
level n, �0�n denotes the wave function of the vacuum on the
Landau level n, �kĉ0,k

† �0�0 corresponds to the completely

filled zeroth Landau level, b̂n,n�
† is the Bose creation operator

of the magnetoexciton with the electron on the Landau level
n and the hole on the Landau level n�. We consider magne-
toexcitons with magnetic momenta equal to zero, for which
the Bose condensate in the system of noninteracting particles
is the exact solution of the problem.33 Following Ref. 33

b̂n,n�
† for this case is defined as

b̂n,n�
† =

1
�Nd

�
k

ĥn�,k
† ĉn,−k

† , �44�

where ĥn�,k
† is the Fermi creation operator of the hole with the

y component of the wavevector k on the Landau level n�,
Nd=S / �2�rB

2� is the macroscopic degeneracy of Landau lev-
els, and S is the area of the system.

Let us use the Landau gauge for the wave function of the
single electron 	n,k�x ,y� with the y component of the
wavevector k on the Landau level n. In the Landau gauge
with the vector potential A= �0,Bx ,0�, the two-component
eigenfunction 	n,k�r� is given by58

Magnetic field, B (T)

R
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M
ef
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)/
m
e
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0.0001
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FIG. 3. �Color online� The ratio of the effective magnetopolari-
ton mass Meff�B� to the mass of a free electron me as a function of
magnetic field B.
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	n,k�x,y� =
Cn

�Ly

exp�iky��s�n�in−1�n−1�x − rB
2k�

in�n�x − rB
2k�


 , �45�

where s�n� defined by

s�n� = � 0 �n = 0� ,

�1 �n � 0� .
� �46�

Ly are normalization lengths in the y direction

Cn = � 1 �n = 0�

1/�2 �n � 0� � �47�

and

�n�x� = �2nn ! ��rB�−1/2exp�−
1

2
� x

rB
	2
Hn� x

rB
	 , �48�

where Hn�x� is the Hermite polynomial. The corresponding
eigenenergies depend on the quantum number n only and are
given by

�n =
�vF

rB

�2n . �49�

Substituting Eqs. �44� and �45� into Eq. �43� and using the

electron-photon interaction Ĥint �40�, we finally obtain from
Eq. �39�

���R� = � evF

i�
� dx� dyx�	1,k

� �x,y��̂� · E� ph0	0,k�x,y���
=

evF�Eph0�
�2�

. �50�

In Eq. �50� the energy of photon absorbed at the creation of
the magnetoexciton �at EB

�b���1−�0� is given by

�� = �1 − �0 = �2
�vF

rB
. �51�

Substituting the photon energy from Eq. �51� into Eq. �50�,
we obtain the Rabi splitting corresponding to the creation of
a magnetoexciton with the electron on the Landau level 1
and the hole on the Landau level 0 in graphene

��R = e���vFrB

�2�W
	1/2

. �52�

As follows from Eq. �52�, the Rabi splitting in graphene is
related to the creation of the magnetoexciton, which de-
creases when the magnetic field increases and is proportional
to B−1/4. Therefore, the Rabi splitting in graphene can be
controlled by the external magnetic field. Note that in a semi-
conductor quantum well contrary to graphene the Rabi split-
ting does not depend on the magnetic field.

Substituting Eq. �41� and the initial �i� and final �f� elec-
tron states from Ref. 33 into Eq. �39� after the integration we
obtain the Rabi splitting constant �R for a quantum well

��R = d12Eph0, �53�

where d12 is the matrix term of a magnetoexciton generation
transition in a QW represented as

d12 = e��f ��
i

ri�i�� . �54�

The similar calculations for the transition dipole moment and
the photon energy corresponding to the formation of magne-
toexciton with the electron and hole on zeroth Landau level
in the QW gives

d12 =
erB

2�2
,

�� = �1 − �0 = ��c =
�eB

c�eh
. �55�

Substituting the transition dipole moment and the photon en-
ergy given by Eq. �55� into Eq. �39�, we obtain the Rabi
splitting for QW

��R = e�� �

4��ehW
	1/2

. �56�

Thus, as it follows from Eq. �56�, the Rabi splitting in a QW
does not depend on the magnetic field in the limit of high
magnetic field. Therefore, only in graphene can the Rabi
splitting be controlled by the external magnetic field in the
limit of high magnetic field.

It is easy to show that the Rabi splitting related to the
creation of the magnetoexciton, the electron on the Landau
level 0 and the hole on the Landau level −1 will be exactly
the same as for the magnetoexciton with the electron on the
Landau level 1 and the hole on the Landau level 0. Let us
mention that dipole optical transitions from the Landau level
−1 to the Landau level 0, as well as from the Landau level 0
to the Landau level 1, are allowed by the selection rules for
optical transitions in single-layer graphene.49

V. BOSE-EINSTEIN CONDENSATION OF TRAPPED
MICROCAVITY MAGNETOPOLARITONS IN GRAPHENE

AND QW

Although Bose-Einstein condensation cannot take place in
a 2D homogeneous ideal gas at nonzero temperature, as dis-
cussed in Ref. 3, in a harmonic trap the BEC can occur in
two dimensions below a critical temperature Tc

0. Below we
estimate this temperature. In a harmonic trap at a temperature
T below a critical temperature Tc

0 �T�Tc
0�, the number

N0�T ,B� of noninteracting magnetopolaritons in the conden-
sate is given by3

N0�T,B� = N −
��2���2��gs

�e�gv
�e� + gs

�h�gv
�h��Meff�B�

�2�eff
�kBT�2

= N −
��gs

�e�gv
�e� + gs

�h�gv
�h��Meff�B�

3�2�
�kBT�2, �57�

where N is the total number of magnetopolaritons, gs
�e�,�h� and

gv
�e�,�h� are the spin and graphene valley degeneracies for an

electron and a hole, respectively, kB is the Boltzmann con-
stant, ��x� is the gamma function, and ��x� is the Riemann
zeta function.
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Applying the condition N0=0 to Eq. �57� and assuming
that the magnetopolariton effective mass is given by Eq. �38�
we obtain the BEC critical temperature Tc

�0� for the ideal gas
of magnetopolaritons in a single graphene layer in a mag-
netic field

Tc
�0��B� =

1

kB
� 3�2�N

��gs
�e�gv

�e� + gs
�h�gv

�h��Meff�B��1/2

. �58�

At temperatures above Tc
�0�, the BEC of magnetopolaritons in

a single graphene layer does not exist. A three-dimensional
plot of Tc

�0� /�N as a function of magnetic field B and spring
constant � is presented in Fig. 4. In our calculations, we used
gs

�e�=gv
�e�=gs

�h�=gv
�h�=2. The functional relations between the

spring constant � and the magnetic field B corresponding to
different constant values of Tc

�0� /�N are presented in Fig. 5.
According to Eq. �58�, the BEC critical temperature Tc

�0� de-
creases with the magnetic field as B−1/4 and increases with
the spring constant as �1/2. These functional relations are
illustrated in Figs. 4–6.

Substituting Eq. �58� into Eq. �57�, we obtain

N0�T,B�
N

= 1 − � T

Tc
�0��B�
2

. �59�

Note that, since the quadratic spectrum of noninteracting
magnetopolaritons given by Eq. �19� does not satisfy the
Landau criterion of superfluidity,59,60 the ideal Bose gas of
magnetopolaritons in high magnetic field in graphene is not a
superfluid. Since magnetopolaritons in a QW are described
by the same effective Hamiltonian as in graphene but with
the different magnetic mass of the magnetoexciton, the re-
sults of the calculations presented in Figs. 4–6 for the critical
temperature of the BEC for magnetopolaritons in graphene
are valid for the BEC in a QW in a high magnetic field. This
is true because the contribution to the effective mass of the

magnetopolariton from the second term in the rhs of Eq. �38�
is much higher than from the first term.

VI. DISCUSSION AND CONCLUSIONS

In our calculations, we have assumed that the system un-
der consideration is in thermal equilibrium. This assumption
is valid if the relaxation time is less than the quasiparticle
lifetime. Although the magnetopolariton lifetime is short,
thermal equilibrium can be achieved within the regime of a
strong pump. Porras et al.61 claimed that the time scale for
polariton-exciton scattering can be small enough to satisfy
this condition for the existence of a thermalized distribution
of polaritons in the lowest k states in a quantum well. We
expect a similar characteristic time for magnetopolariton-
magnetoexciton scattering in graphene. However, the consid-
eration of pump and decay in a steady state may lead to

FIG. 4. �Color online� The ratio of the BEC critical temperature
to the square root of the total number of magnetopolaritons Tc

�0� /�N
as a function of the magnetic field B and the spring constant �. We
assume that the environment around graphene is GaAs with �
=12.9.
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results which are different from the ones presented in this
paper. The consideration of the influence of decay on the
BEC may be the subject of further studies of a trapped gas.

Above we discussed the BEC of the magnetopolaritons in
a single graphene layer placed within a strong magnetic field.
What would happen in a multilayer graphene system in a
high magnetic field? Let us mention that the magnetopolari-
tons formed by the microcavity photons and the indirect ex-
citons with the spatially separated electrons and holes in dif-
ferent parallel graphene layers embedded in a semiconductor
microcavity can exist only at very low temperatures kBT
���R. For the case of the spatially separated electrons and
holes, the Rabi splitting �R is very small in comparison to
the case of electrons and holes placed in a single graphene
layer. This is because �R�d12 and the matrix element of
magnetoexciton generation transition d12 is proportional to
the overlapping integral of the electron and hole wave func-
tions, which is very small if the electrons and holes are
placed in different graphene layers. Therefore, we cannot
predict the effect of relatively high BEC critical temperature
for the electrons and holes placed in different graphene lay-
ers.

Spin polarization is important not only for the excitations
but for the condensate itself. It was shown in Refs. 47 and 48
that taking into account the spin degree of freedom can
qualitatively modify the results for exciton-magnetopolariton
condensation at magnetic fields lower than the critical mag-
netic field. We assume that magnetic field B under consider-
ation is above the critical one and, therefore, the Zeeman
splitting does not affect the spectrum of collective excitations
according to Fig. 1 in Ref. 47. So we neglect the Zeeman
splitting in our calculations.

To conclude, we have derived the effective Hamiltonian
of the ideal gas of trapped cavity magnetopolaritons in a
single graphene layer and a QW in a high magnetic field. The
resonance between magnetoexcitons and cavity photonic
modes can be achieved either by controlling the spectrum of
magnetoexcitons �ex�P�, by changing magnetic field B or by

controlling the length of the microcavity LC. We analyzed
two possible physical realizations of the trapping potential:
inhomogeneous local stress or a harmonic electric field po-
tential coupled to magnetoexcitons and a parabolic shape of
the semiconductor cavity causing the trapping of microcavity
photons. We conclude that both realizations of confinement
result in the same effective Hamiltonian. It is shown that the
effective magnetopolariton mass Meff increases with the
magnetic field as B1/2. Meanwhile, the BEC critical tempera-
ture Tc

�0� decreases as B−1/4 and increases with the spring
constant as �1/2. The gas of magnetopolaritons in graphene
and a QW in a high magnetic field can be treated as an ideal
Bose gas since magnetoexciton-magnetoexciton interaction
vanishes in the limit of a high magnetic field and a relatively
high dielectric constant of the cavity ��2, according to Sec.
II. Let us mention that this condition for the high dielectric
constant of the microcavity is valid only for graphene and it
is not valid for the quantum well. Observation of trapped
cavity magnetopolaritons in graphene in a high magnetic
field would be an interesting confirmation of the magnetopo-
laritonic BEC that we have described. Besides, we have ob-
tained the Rabi splitting related to the creation of a magne-
toexciton in a high magnetic field in graphene. Since this
Rabi splitting is proportional to B−1/4, we conclude that the
Rabi splitting in graphene can be controlled by the external
magnetic field B, while in a quantum well the Rabi splitting
does not depend on the magnetic field when it is strong. The
results for the critical BEC temperature of magnetopolaritons
in a QW and graphene in high magnetic field are similar
since the magnetoexcitons in both systems are described by
the same Hamiltonian.
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